Series A58 Absolute - Parallel Output

- Single or Multi-turn versions
- Resolution up to 14 Bit (single turn) and 24 Bit (multi-turn)
- Parallel output
- Short Circuit Protected

This product has been discontinued.
Please contact Dynapar for assistance. 1-800-873-8731
www.dynapar.com

As machine position control systems strive for higher and higher performance, being able to incorporate a feedback device which provides exact position data can be of substantial benefit. Dynapar brand Series A58 encoders provide a unique data output for each resolvable shaft position. By using absolute position rather than incremental count data, the shaft position can always be known, even after power interruptions or in the presence of electrical noise. System design can be simplified because there is no need to perform a reference cycle or return to home function to determine the true machine position.
Single turn devices are offered with resolution ranging from $.5^{\circ}$ (720 counts per rev) to 14 bit (16,384 counts per rev). For applications which require travel over extended distances, multi-turn models can provide unique position outputs for each shaft position up to 4096 rotations.
Parallel output formats are available in binary or gray code.

SPECIFICATIONS

Mechanical

Shaft Size: 6 mm syncro flange, 10 mm clamping flange
Shaft Loading: 10 mm : 24 lbs axial, 35 lbs radial; $6 \mathrm{~mm}: 13 \mathrm{lbs}$ axial, 24 lbs radial
Shaft Tolerance: $+0 /-0.0007$
Starting Torque: ≤ 0.2 in-oz
Weight: 11 oz . (300 g .)
Shaft Speed: 6,000 RPM

Environmental

Operating Temperature: -25° to $85^{\circ} \mathrm{C}$
Storage Temperature: -25° to $+85^{\circ} \mathrm{C}$
Shock: 100 G's for 3 msec duration
Vibration: 10 to 500 Hz @ 10 G's
Enclosure Rating: IP67

Electrical - Parallel Outputs

Accuracy $\pm 1 / 2$ LSB (± 1 LSB above 12 bit)
Power Requirements: 5 VDC $\pm 5 \%$ or $10-30 \mathrm{~V}$; 200 mA maximum
Code: Absolute; natural binary or Gray Code
Data Output: $\pm 30 \mathrm{~mA}$, short circuit protected
Control Inputs: Active low, $\leq 20 \%$ of $\mathrm{V}_{(\mathbb{N})}$; Inactive high, open or $\geq 70 \%$ of $\mathrm{V}_{\text {(IN }}$
Latch Input: Data outputs change with shaft position when high or open; data outputs inhibited from changing when low. Available only for models with 12 bit and below resolution
Direction Input: Count up for CW shaft rotation when high or open; count down for CW shaft rotation when low. Available only for models with 13 bit and below resolution
Frequency Response: 100 kHz maximum

Electrical Connections

Table 1 - Single Turn				
14 bit	13 Bit	12 Bit	10 Bit	Color
S0 (LSB)	N.C.	N.C.	N.C.	Grey/Pink
S1	S0 (LSB)	N.C.	N.C.	Brown/Yellow
S2	S1	S0 (LSB)	N.C.	Brown/Grey
S3	S2	S1	N.C.	Red/Blue
S4	S3	S2	S0 (LSB)	Violet
S5	S4	S3	S1	White/Brown
S6	S5	S4	S2	White/Green
S7	S6	S5	S3	White/Yellow
S8	S7	S6	S4	White/Grey
S9	S8	S7	S5	White/Pink
S10	S9	S8	S6	White/Blue
S11	S10	S9	S7	White/Red
S12	S11	S10	S8	White/Black
S13mSB)	S12(MSB)	S11(MSB)	S9 (MSB)	Brown/Green
Tristate				Yellow
Latch (binary only)				Pink
Direction				Green
Common				Black
$5 \mathrm{~V} / 10-30$ VDC				Red
$\overline{\text { Alarm }}$				Brown

Table 2 - Multi-Turn					
Signal	Color	Pin	Signal	Color	Pin
S0	Brown	2	M4	White/Blue	14
S1	Green	21	M5	Brown/Blue	33
S2	Yellow	3	M6	White/Red	15
S3	Grey	22	M7	Brown/Red	34
S4	Pink	4	M8	White/Black	16
S5	Violet	23	M9	Brown/Black	35
S6	Grey/Pink	5	M10	Grey/Green	17
S7	Red/Blue	24	M11	Yellow/Grey	36
S8	White/Green	6	$\overline{\text { Alarm }}$	Pink/Green	18
S9	Brown/Green	25	Direction	Yellow/Pink	10
S10	White/Yellow	7	$\overline{\text { Latch }}$	Green/Blue	30
S11	Yellow/Brown	26	Enable	Yellow/Blue	12
M0	White/Grey	8	$10-30$ VDC	Red	13
M1	Grey/Brown	27	$10-30$ VDC	White	31
M2	White/Pink	9	Common	Blue	1
M3	Pink/Brown	28	Common	Black	20

A58 Housing Dimensions (less mount)

A58 Mount Dimensions (less housing)

Ordering Information
To order, complete the model number with code numbers from the table below:

Code 1: Model	Code 2: CPR	Code 3: Mechanical	Code 4: Interface	Code 5: Electrical	Code 6: Termination
A58	$\square \square$	\square	Γ		\square
Ordering Information					
A58 58mm Absolute encoder, Parallel Output	0720 720 counts/ rev** 1024 1024 counts/ rev (10 bit) 4096 4096 counts/ rev (12 bit) 8192 8192 counts/ rev(13 bit) 0014 16,384 counts/ rev (14 bit) 1212 4096 counts/ rev, multiturn (24 bit)	0 Face mount 10 mm shaft 1 Servo mount 6 mm shaft	0 ParallelBinary (pushpull) 1 Parallel-Gray code (pushpull)	05 VDC input power 1 10-30 VDC input power (must be ordered for multiturn models*)	0 End Exit Cable 2 End exit cable w/ DB37 male connector (must be ordered for multi-turn models*)

* Code 2: 1024, 4096, 8192, 0014 = single-turn

1212 = multi-turn
** Utilizes excess gray code

Series A58 Absolute - Bus Output

As machine position control systems strive for higher and higher performance, being able to incorporate a feedback device which provides exact position data can be of substantial benefit. Dynapar brand Series A58 encoders provide a unique data output for each resolvable shaft position. By using absolute position rather than incremental count data, the shaft position can always be known, even after power interruptions or in the presence of electrical noise. System design can be simplified because there is no need to perform a reference cycle or return to home function to determine the true machine position.
Single turn devices are offered with resolution ranging from $.5^{\circ}$ (720 counts per rev) to 14 bit (16,384 counts per rev). For applications which require travel over extended distances, multiturn models can provide unique position outputs for each shaft position up to 4096 rotations.
Choice of bus network which can significantly reduce wiring, enhance diagnostics and reduce total installed cost.

SPECIFICATIONS

Mechanical

Shaft Size: 6 mm syncro flange, 10 mm clamping flange
Shaft Loading: 10 mm : 24 lbs axial, 35 lbs radial; 6 mm : 13 lbs axial, 24 lbs radial
Shaft Tolerance: $+0 /-0.0007$
Starting Torque: ≤ 0.2 in-oz
Weight: $11 \mathrm{oz} .(300 \mathrm{~g}$.
Shaft Speed: 6,000 RPM

Environmental

Operating Temperature: -25° to $+85^{\circ} \mathrm{C}$
Storage Temperature: -25° to $+85^{\circ} \mathrm{C}$
Shock: 100 G's for 3 msec duration
Vibration: 10 to 500 Hz @ 10 G's
Enclosure Rating: IP67

Electrical - DeviceNet

Accuracy: $\pm 1 / 2$ LSB (± 1 LSB above 12 bit)
Power Requirements: 10-30 VDC;
200 mA maximum
Code: Binary
Current for feed through supply: 3 Amp
Interface: CAN High Speed per ISO/DIS
11898, CAN specification 2.0 B
Protocol: DeviceNet according to Rev. 2.0
programmable encoder
Update Rate: 5 ms
Baud Rate: DIP switch selectable 125, 250, 500 Kbps
MAC ID: DIP switch settable

Electrical - Profibus

Accuracy $\pm 1 / 2$ LSB (± 1 LSB above 12 bit)
Power Requirements: 10-30 VDC 200 mA maximum
Code: Binary
Current for feed through supply: 2 Amp
Interface: RS-485
Protocol: Profibus DP w/class 2 encoder profile
Baud Rate: Automatically set by master between 9.6 Kbps and 12 Mbps
Device Address: DIP switch settable
Programmable Functions: direction, resolution per rev, total resolution, preset

Electrical - Interbus

Accuracy: $\pm 1 / 2$ LSB (± 1 LSB above 12 bit)
Power Requirements: 10-30 VDC
200 mA maximum
Code: Binary
Interface: RS-485 for remote bus
Protocol: Interbus w/ ENCOM profile K3
Update Rate: $600 \mu \mathrm{~s}$
Baud Rate: 500 Kbps
Programmable functions: direction, scaling factor, preset, offset

A58 Housing Dimensions (less mount)

7/, \quad Industrial Bus Interfaces

Micro Connector: Integrated Manifold: Simple plug-in connection from a "T" drop off the DeviceNet trunk line

A58 Mount Dimensions (less housing)

Ordering Information
To order, complete the model number with code numbers from the table below:

Code 1: Model		Code 2: CPR	Code 3: Mechanical	Code 4: Interface		Code 5: Electrical	Code 6: Termination					
A58			\square	\square		\square	\square					
Ordering Information												
A58 58mm Absolute encoder	1024	1024 counts/ rev (10 bit)	0 Face mount 10 mm shaft 1 Servo mount 6 mm shaft	D DeviceNet P Profibus I Interbus		10-30 VDC input power	M Integrated bus manifold					
	$\begin{array}{\|ll} 4096 & 4096 \text { counts/ } \\ & \text { rev (12 bit) } \end{array}$						available when code $4=\mathrm{D}$ E 5 pin Micro connector ${ }^{\ddagger}$					
	8192	8192 counts/ rev(13 bit)										
	0014	16,398 counts/ rev (14 bit)										
	1212	4096 counts/ rev, multiturn (24 bit)										
	1213	8192 counts/ rev, multiturn (25 bit)										
	1214 16,384 counts/ rev, multiturn (26 bit)											
Accessories												
ACAB-F90MS1 5 pin DeviceNet cable, female 90°, male straight, 1 meter, Micro connector ACAB-F90MS2 5 pin DeviceNet cable, female 90°, male straight, 2 meters, Micro connector ACAB-F90FS1 5 pin DeviceNet cable, female 90°, female straight, 1 meter, Micro connector ACAB-F90FS2 5 pin DeviceNet cable, female 90°, female straight, 2 meters, Micro connector ACON-MFF DeviceNet splitter, male, female, female												

